United States Patent

US009342377B2

(12) 10) Patent No.: US 9,342,377 B2
Siegwart (45) Date of Patent: *May 17, 2016
(54) MANAGING A RESOURCE LOCK 5,737,611 A * 4/1998 Vicik ..o 710/200
6,622,189 B2* 9/2003 Bryant ctal. 710/200
. : ; : 6,687,904 B1* 2/2004 Gomesetal. 718/102
(75) Inventor: David K. Siegwart, Eastleigh (GB) 6708198 BI* 32004 Simmonsetal . 213/104
(73) Assignee: INTERNATIONAL BUSINESS (Continued)
MACHINES CORPORATION,
Armonk, NY (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this EP 1104900 A2 6/2001
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days.
Thi tent i biect t " inal di Anonymous: “Page Info—Mozilla Firefox v.1.5.0.1—General and
Claliingle‘l ent 1s subject to a terminal dis- Links tabs—BEA JRockit 5.0 Documentation” [online]
’ XP002410743 [retrieved Dec. 7, 2006] retrieved from the Internet:
(21) Appl. No.: 13/418,804 <http://e-docs.bea.com/w Ljrockit/docs50/intern/pdfhtml>, 3 pgs.
(Continued)
(22) Filed: Mar. 13,2012
(65) Prior Publication Data DPrimary Examiner — Kha@ Dang .
(74) Attorney, Agent, or Firm — Cuenot, Forsythe & Kim,
US 2012/0198111 Al Aug. 2,2012 LLC
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 12/098,664, filed on Controlling access to a resource by a plurality of resource
Apr. 7, 2008, which is a continuation of application requesters is disclosed. The resource lock operates in a con-
No. 11/530,055, filed on Sep. 8, 2006, now Pat. No. tention efficient (heavyweight) operating mode, and in
7,383,369. response to a request from a resource requester to acquire the
51) Int.Cl resource lock, a count of a total number of acquisitions of the
Gn 0;$F 1 200 2006.01 resource lock in the contention efficient operating mode is
GOGF 9/52 EZOO 6. 01% incremented. In response to access to the resource not being
' contended by more than one resource requester, a count of a
(52) US.CL) number of uncontended acquisitions of the resource lock in
C.PC - GO6F 9 /52 (.2013'01)’ GOGF 12/00 (2013.01) the contention efficient operating mode is incremented, and a
(58) Field of Classification Search contention rate is calculated as the number of uncontended
USPC s 710/200, 240, 709/229; 718/108 acquisitions in the contention efficient operating mode
See application file for complete search history. divided by the total number of acquisitions in the contention
. efficient operating mode. In response to the contention rate
(56) References Cited meeting a threshold contention rate, the resource lock is
U.S. PATENT DOCUMENTS cha(rilged to a non-contention efficient (lightweight) operating
mode.
4,716,528 A * 12/1987 Crusetal.coccoueurne 710/200

5,414,839 A * 5/1995 Joshi

20 Claims, 3 Drawing Sheets

24 | REsoURCE 28
LOCK =
202 | RESOURCE
AEQUESTER =" RESOURCE
OPERATING
208 MODE
~—T™
212 [1 00K MODE CHANGER
212 |
CONTENTION EFFICIENT OPERATING MODE DATA
214 NOWBEROF]
Z_LT~ CONTENTION RATE UNCONTENDED Lt
ACQUISITIONS 218
216 | || THRESHOLD TOTAL NUMBER OF "
St e R
CONTENTION RATE ACQUISITIONS 220

US 9,342,377 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,725,308 B2 *
6,735,760 B1*

4/2004 Joyetal. ..o 710/200
5/2004 Dicecociiiiiiiiniiiins 717/139

6,792,601 Bl 9/2004 Dimpsey et al.

6,950,945 B2 9/2005 Pfister et al.

7,318,220 B2 1/2008 Mehaffy et al.
OTHER PUBLICATIONS

Onodera, T., et al., “A study of locking objects with bimodal fields,”
Sigplan Notices ACM USA, vol. 34, No. 10, Oct. 1999, pp. 223-237.

Andreasson, E., “New features and tools in JRockit 5.0,” [online]
Feb. 22,2005, XP002410748 [retrieved Dec. 7, 2006] retrieved from
the Internet: <http://dev2dev.bea.com/pub/a/2005/02/jrockitS
new__features. html>, 6 pgs.

Anonymous, “Content of beawjr50docs-pdf.zip—WinZip v9.0”
[online] XP002410745 [retrieved Dec. 7, 2006] retrieved from the
Internet: <http://e-docs.bea.com/wLjrockit/docs50/zip/
beawjr5Odocts-pdtzip> 1 pg.

BEA Systems, “Using the BEA JRockit Runtime Analyzer—JR ockit
5.0 Service Pack 2,” BEA JRockit Runtime Analyzer documentation
[online] Jul. 21, 2005, XP002410746, [retrieved Dec. 7, 2006]
retrieved from the Internet: <http://e-docs.beas.com/wljrockit/
docs50/zip/beaw1jr50docs-pdf.zip>, 38 pgs.

* cited by examiner

U.S. Patent May 17, 2016 Sheet 1 of 3 US 9,342,377 B2

VO
108
Y

STORAGE
104
A
FIGURE 1

BUS 108

CPU
102
A

US 9,342,377 B2

Sheet 2 of 3

May 17, 2016

U.S. Patent

022 | 1| sNOSINDOY JLYH NOUNIINGD | | L
340 HIBNNN YLOL TIOHSHHL]¥
a7z SNOILISINODOY
T G3ONILNOONN J1¥H NOLNIINGD |12y
40 H3EWNN rie
¥1vQ 3A0W ONILYHIO INFIOI43 NOLNIINOD| |
[4%4
T
MW HIFDNYHO 30N MO0 s
P
ol (814 902 -
DNILYHIO —
A] \ | ©31S3N03Y
JHNOSIH - (! < 30HNOS3Y
o H20T
802 FOHNOSIH |
0 502 |
-
¢ 3HNYI4

U.S. Patent May 17, 2016 Sheet 3 of 3
FIGURE 3

INCREMENT TOTAL NUMBER OF
LOCK ACQUISITIONS IN THE
a0] CONTENTION EFFICIENT MODE

(HEAVYWEIGHT)

CURRENT
ACQUISITION NOT

NQ

CONTENDED ?

304

INCREMENT NUMBER OF
UNCONTENDED ACQUISITIONS
Sgg\" IN THE CONTENTION EFFICIENT

MODE

: r
CALCULATE CONTENTION RATE
AS THE NUMBER OF
UNCONTENDED ACQUISITIONS

A DIVIDED BY THE TOTAL
308 NUMBDER OF LOCK
ACQUISITIONS IN THE
CONTENTION EFFICIENT MODE

CONTENTION
RATE MEETS
THRESHOLD
RATE 7

310 312

CHANGE RESQURCE
LOCK TO NON-
CONTENTION EFFICIENT
OPERATING MODE
(LIGHTWEIGHT)

US 9,342,377 B2

US 9,342,377 B2

1
MANAGING A RESOURCE LOCK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of United Kingdom
Application 0518516.0 filed Sep. 10, 2005, which is fully
incorporated by reference. This application is a Continuation
of' U.S. application Ser. No. 12/098,664, filed on Apr. 7, 2008,
which is a Continuation of U.S. application Ser. No. 11/530,
055, filed Sep. 8, 2006, the subject of which are incorporated
herein by reference.

FIELD OF THE INVENTION

The present invention relates to the management of a
resource lock. In particular it relates to improving the effi-
ciency of a resource lock operating in one of two operating
modes.

BACKGROUND OF THE INVENTION

A software lock is a mechanism to allow one software
thread to execute a block of code, while excluding all other
threads from simultaneously executing that same block of
code. The thread permitted to execute the code is said to
‘possess’ the lock, and the block of code is known as a syn-
chronised block. Locks are employed to ensure deterministic
program behaviour, a characteristic of thread safety, for syn-
chronised blocks which are shared between threads. A com-
promise for this provision of thread safety is increased over-
head in lock processing. Firstly, locking serialises parts of the
code which reduces the potential for a program to run effi-
ciently on multiprocessor (MP) machines. For instance, one
or more processors may be blocked from entering a block of
code (and hence from doing any work) while a thread pos-
sessing the lock executes the synchronised block. This is
called contention. Secondly, the operation associated with
locking has a high overhead, especially when there is no
actual contention. In this situation, locking is required due to
apossibility of contention, although contention may not actu-
ally exist.

Two categories of lock are employed: a “lightweight lock™;
and a “heavyweight lock”. Lightweight locks avoid high
overhead when there is no contention, but perform poorly
when there is contention. Lightweight locks are usually
implemented using one or more primitive machine instruc-
tions and are strongly associated with good hardware support.
Heavyweight locks have relatively high overhead when there
is no contention, but perform very well when there is conten-
tion. Heavyweight locks are often implemented in software,
such as through a call to a thread library, kernel, or operating
system, and are supported more by algorithms such as queues
and schedulers rather than hardware. The heavyweight lock
requires significantly greater memory storage, and many
more machine operations.

In some software a software lock has a bimodal existence
between a lightweight mode and a heavyweight mode. Bimo-
dal existence of locks is explored in detail in the paper “A
Study of Locking Objects with Bimodal Fields” (Tamiya
Onodera and Kiyokuni Kawachiya, 1999). Initially, the lock
is stored as a lightweight lock. When contention occurs, the
lock is changed to a heavyweight lock. This change of mode
from lightweight to heavyweight is known as lock inflation.
The reverse transition, deflation from a heavyweight to a
lightweight mode, occurs when certain conditions are satis-
fied. One of these conditions is that the lock is no longer

15

20

25

30

40

45

50

2

contended. The process of inflation and deflation allows the
best of both worlds: when the lock is inflated it performs well
when there is contention; and when it is deflated it performs
well when there is no contention.

Typically, deflation will occur as soon as a lock ceases to be
contended. This is known as quick-deflation because the
deflation occurs at the first opportunity in the absence of
further contention. This can be effective where contention is
infrequent, but a high frequency of changes between con-
tended and uncontended periods for a lock (intermittent con-
tention) can result in a corresponding high frequency of infla-
tion and deflation of the lock. Intermittency is a chaotic
phenomenon whereby periods of one state are punctuated by
periods of another state. This may be seen on the small scale,
where locks change state frequently between contended and
uncontended states, which we call intermittent contention, or
on the large scale where long periods of high contention are
mixed with long periods of no contention, and also with
periods of intermittent contention. A lock that exhibits peri-
ods of no contention, high contention, and intermittent con-
tention is referred to as an intermittent lock. Inflation is a
relatively expensive process (having a large overhead) and
frequent inflation is itself a cause of poor performance in a
running software application. Thus intermittent contention
causes quick-deflation to be an inefficient algorithm because
it causes frequent inflation.

For this reason, software can implement a modification to
the quick-deflation policy in which, for each lock, a count is
maintained of a number of times that the lock is inflated.
When this count exceeds a threshold the lock is prevented
from being deflated forever more. This is known as “sticky’
inflation. Thus an intermittent lock will eventually become
inflated and stay inflated, but for a non-intermittent lock (i.e.
alock which s either contended or uncontended, but not both)
the bimodal behaviour of inflation and deflation ensures that
the lock is in an appropriate mode. Sticky inflation resolves
the problem of high frequency inflation due to intermittent
contention, however an intermittent lock is not fully opti-
mised once sticky inflation has taken place because there is no
opportunity to deflate the lock in the event that the lock ceases
to demonstrate intermittent contention. Intermittent locks can
experience highly chaotic behaviour: sometimes uncon-
tended; sometimes contended; and sometimes intermittent.
During intermittent periods it will be best for the lock to be
either inflated or deflated depending on the degree of conten-
tion. During the uncontended periods, it will be best for the
lock to be deflated. During the contended periods it will be
best for the lock to be inflated. However the sticky inflation
policy does not take into account these situations.

An improvement to sticky inflation is available which
resets the inflation count to zero after a certain period. Whilst
this can remove the drawback of sticky inflation after the
certain period, a definition of the appropriate period is diffi-
cult to arrive at. For example a count can be reset after each
execution of a Garbage Collector routine for the disposal of
unused software entities, such as objects. However, there is no
formal relationship between the behaviour of a lock and
occurrences of garbage collection. Furthermore there is no
good criterion for deciding when a lock’s inflation count
should be reset. Sticky inflation with such an improvement
also necessitates two parameters: a parameter to determine
when inflation should be sticky; and a threshold parameter to
determine when deflation should occur.

This it would be advantageous to provide a scheme for the
inflation and deflation of locks which provides for intermit-
tent locks remaining bimodal, allowing them to be inflated
when contended and deflated when uncontended, and further

US 9,342,377 B2

3

allowing for locks to remain either inflated or deflated
depending on a degree of contention when the contention is
intermittent.

SUMMARY OF THE INVENTION

The present invention accordingly provides, in a first
aspect, a method of operating a resource lock for controlling
access to a resource by a plurality of resource requesters, the
resource lock operating in a contention efficient (heavy-
weight) operating mode, and the method being responsive to
a request from a resource requester to acquire the resource
lock, the method comprising the steps of: incrementing a
count of a total number of acquisitions of the resource lock in
the contention efficient operating mode; in response to a
determination that access to the resource is not contended by
more than one resource requester, performing the steps of: a)
incrementing a count of a number of uncontended acquisi-
tions of the resource lock in the contention efficient operating
mode; b) calculating a contention rate as the number of
uncontended acquisitions in the contention efficient operat-
ing mode divided by the total number of acquisitions in the
contention efficient operating mode; and ¢) in response to a
determination that the contention rate meets a threshold con-
tention rate, causing the resource lock to change to a non-
contention efficient (lightweight) operating mode.

In this way the performance of the resource lock is
improved. Where the resource lock is uncontended it remains
in the non-contention efficient mode. Where the resource lock
is contended it remains in the contention efficient mode.
Where the resource lock is intermittent (i.e. the resource lock
is sometimes contended and sometimes uncontended) it will
be changed to the non-contention efficient operating mode
only where the contention rate does not meet the threshold
contention rate. Otherwise, the resource lock will remain in
the contention efficient operating mode. The resource lock
remains in the contention efficient operating mode for high
rates of contention without the needless cost of continually
entering and leaving the contention efficient operating mode.
The resource lock is changed to the non-contention efficient
operating mode when required for low rates of contention.
Where the resource lock is intermittent, the frequent cycle of
changing between operating modes caused by sudden
changes in contention is avoided, and instead this cycle is
dampened by the slower changing nature of the contention
rate. Thus a scheme is provided for the inflation and deflation
of locks which allows intermittent locks to remain bimodal,
allowing them to be inflated when contended and deflated
when uncontended, and allows for locks to be either inflated
or deflated depending on a degree of contention when the lock
is intermittent. The degree of contention is the contention rate
as compared to the threshold contention rate.

Preferably, the determination that access to the resource
lock is not contended by more than one resource requester
includes a determination that the resource requester obtains a
fast acquisition of the resource lock.

Preferably, causing the resource lock to change to a non-
contention efficient (lightweight) operating mode includes
storing the count of the number of uncontended acquisitions
in the contention efficient operating mode and the count of the
total number of acquisitions in the contention efficient oper-
ating mode for use in a subsequent contention efficient
(heavyweight) operating mode.

The present invention accordingly provides, in a second
aspect, a system for operating a resource lock to controlling
access to a resource by a plurality of resource requesters, the
resource lock operating in a contention efficient (heavy-

10

15

20

25

30

35

40

45

50

55

60

65

4

weight) operating mode, and the system being responsive to a
request from a resource requester to acquire the resource lock,
the system comprising: means for incrementing a count of a
total number of acquisitions of the resource lock in the con-
tention efficient operating mode; means for, in response to a
determination that access to the resource is not contended by
more than one resource requester a) incrementing a count of
a number of uncontended acquisitions of the resource lock in
the contention efficient operating mode; b) calculating a con-
tention rate as the number of uncontended acquisitions in the
contention efficient operating mode divided by the total num-
ber of acquisitions in the contention efficient operating mode;
and c) in response to a determination that the contention rate
meets a threshold contention rate, causing the resource lock to
change to a non-contention efficient (lightweight) operating
mode.

The present invention accordingly provides, in a third
aspect, an apparatus comprising: a central processing unit; a
memory subsystem; an input/output subsystem; and a bus
subsystem interconnecting the central processing unit, the
memory subsystem, the input/output subsystem; and the sys-
tem as described above.

The present invention accordingly provides, in a fourth
aspect, a computer program element comprising computer
program code to, when loaded into a computer system and
executed thereon, cause the computer to perform the steps of
a method as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now
be described, by way of example only, with reference to the
accompanying drawings, in which:

FIG. 11is ablock diagram of a computer system suitable for
the operation of embodiments of the present invention;

FIG. 2 is a block diagram of a resource lock for a resource
including a lock mode changer in accordance with a preferred
embodiment of the present invention; and

FIG. 3 is a flowchart of a method of the lock mode changer
of FIG. 2 for the resource lock of FIG. 2 operating in a
contention efficient operating mode in accordance with a
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 11is ablock diagram of a computer system suitable for
the operation of embodiments of the present invention. A
central processor unit (CPU) 102 is communicatively con-
nected to a storage 104 and an input/output (I/O) interface 106
via a data bus 108. The storage 104 can be any read/write
storage device such as a random access memory (RAM) or a
non-volatile storage device. An example of a non-volatile
storage device includes a disk or tape storage device. The /O
interface 106 is an interface to devices for the input or output
of data, or for both input and output of data. Examples of I/O
devices connectable to I/O interface 106 include a keyboard,
amouse, a display (such as a monitor) and a network connec-
tion.

FIG. 2 is a block diagram of a resource lock 204 for a
resource 208 including a lock mode changer 210 in accor-
dance with a preferred embodiment of the present invention.
The resource lock 204 is a software or hardware component
for controlling access to the resource 208 by a plurality of
resource requesters 202. The resource 208 can be any shared
resource, such as an executable software routine including
program code. Each of the resource requesters 202 is an entity

US 9,342,377 B2

5

which requests access to the resource by way of acquiring the
resource lock 204. For example, a resource requester 202 can
be a software thread. The resource lock 204 provides access
for a resource requester 202 which has acquired the resource
lock 204 to the resource 208. When acquired by a resource
requester 202, other resource requesters can access the
resource 208 only by requesting, and subsequently acquiring,
the resource lock 204.

The resource lock 204 operates in two operating modes: a
contention efficient operating mode, such as a heavyweight
operating mode; and a non-contention efficient operating
mode, such as a lightweight operating mode. The significance
of these operating modes is described in detail above. A
particular mode of operation of the resource lock 204 is
recorded associated with the lock as operating mode 206. In
use, the resource lock 204 is able to change from the non-
contention efficient operating mode to the contention efficient
operating mode through a process such as inflation, as is well
known in the art. Similarly, the resource lock 204 is able to
change from the contention efficient operating mode to the
non-contention efficient operating mode through a process
such as deflation, as is also well known in the art. A lock mode
changer 210 is operable to affect a change in the operating
mode 206 of the resource lock 204. The lock mode changer
210 is a software or hardware component illustrated sche-
matically as being in communication with the resource lock
204. Alternatively, the lock mode changer 210 can be pro-
vided as a function of the resource lock 204, or as a function
of'a runtime environment or operating system. The lock mode
changer 210 includes contention efficient operating mode
data 212 which includes information relating to the resource
lock 204 when the resource lock 204 operates in the conten-
tion efficient operating mode. Contention efficient operating
mode data 212 includes: a number of uncontended acquisi-
tions 218 in the contention efficient operating mode; a total
number of acquisitions 220 in the contention efficient oper-
ating mode; a contention rate 214 in the contention efficient
operating mode; and a threshold contention rate 216. These
are considered in more detail below.

The number of uncontended acquisitions 218 in the con-
tention efficient operating mode is a count of a number of
acquisitions of the resource lock 204 by any of the resource
requesters 202 in the contention efficient operating mode
where the acquisition was not contended by any other of the
resource requesters 202. A method for maintaining a value of
the number of uncontended acquisitions 218 is included in the
description relating to FIG. 3 below, and includes increment-
ing the number of uncontended acquisitions 218 whenever an
acquisition of the resource lock 204 is not contended by any
other of the resource requesters 202 in the contention efficient
operating mode (recursive entries to the lock by the owner of
the lock can be excluded from counting).

The total number of acquisitions 220 in the contention
efficient operating mode is a count of a total number of
acquisitions made by any of the resource requesters in the
contention efficient operating mode. A method for maintain-
ing a value of the total number of acquisitions 220 is included
in the description relating to FIG. 3 below, and includes
incrementing the total number of acquisitions 220 whenever
the resource lock 204 is acquired in the contention efficient
operating mode.

The contention rate 214 is a measure of the approximate
rate of contention of the resource lock 204 in the contention
efficient operating mode. The contention rate 214 can be
calculated by dividing the total number of acquisitions 220 by
the number of uncontended acquisitions 218.

10

15

20

25

30

35

40

45

50

55

60

65

6

The threshold contention rate 216 is a predefined value of
a contention rate selected such that when a value of the
contention rate 214 in the contention efficient operating mode
meets the value of the threshold contention rate 216, the
operating mode 206 of the resource lock 204 is changed to the
non-contention efficient operating mode.

In this way the performance of the resource lock 204 is
improved. Where the resource lock 204 is uncontended (i.e.
the contention rate 214 meets the threshold contention rate
216), the resource lock 204 remains in the non-contention
efficient mode. Where the resource lock 204 is contended (i.e.
The contention rate 214 does not meet the threshold conten-
tion rate 216), the resource lock 204 remains in the contention
efficient mode. Where the resource lock 204 is intermittent
(i.e. the resource lock is sometimes contended and sometimes
uncontended) the resource lock 204 will be changed to the
non-contention efficient operating mode only where the con-
tention rate 214 does not meet the threshold contention rate
216. Otherwise, the resource lock 204 will remain in the
contention efficient operating mode. This is effective
because, for high rates of contention, it is better to have the
resource lock 204 in the contention efficient operating mode
(without the needless cost of continually entering and leaving
the contention efficient operating mode, i.e. inflation over-
head), and for low rates of contention, it is better to accept the
cost of changing to the contention efficient operating mode
(inflation) when occasionally required for the benefit of using
the non-contention efficient (lightweight) operating mode
most of the time. Also, where the resource lock 204 is inter-
mittent, the frequent cycle of changing between operating
modes caused by sudden changes in contention is avoided,
and instead this cycle is dampened by the slower changing
nature of the contention rate 214.

It will be appreciated by those skilled in the art that the
process of a resource requester 202 acquiring the resource
lock 204 can be implemented using an approach to resource
lock acquisition known as ‘spinlocks’. Using this approach,
when the resource lock 204 is contended in the contention
efficient operating mode, a resource requester 202 attempting
to acquire the resource lock 204 performs two or more
repeated attempts to acquire the lock before determining that
the resource lock 204 is indeed contended. For example, in
the scenario where the resource requester 202 is a software
thread, the thread attempts to acquire the resource lock 204 a
first time before identifying that the resource is in use. Sub-
sequently, the thread will wait for a short time (known as a
“busy wait”) before attempting a subsequent acquisition of
the resource lock 204. This may be repeated several times
before the thread concludes that the resource lock 204 is
indeed contended and the thread will block. If a resource
requester 202 acquires the resource lock 204 before conclud-
ing that the resource is contended, the acquisition is known as
a “fast” acquisition. Alternatively, if the resource requester
202 acquires the resource lock 204 only after blocking, the
acquisition is known as a “slow” acquisition. A “fast” acqui-
sition is considered to be an acquisition which is not con-
tended for the purpose of maintaining the number of uncon-
tended acquisitions 218. A “slow” acquisition is considered to
be an acquisition which is contended for the purpose of main-
taining the number of uncontended acquisitions 218.

FIG. 3 is a flowchart of a method of the lock mode changer
210 of FIG. 2 for the resource lock 204 of FIG. 2 operating in
a contention efficient operating mode in accordance with a
preferred embodiment of the present invention. The method
of FIG. 3 is responsive to a request from a resource requester
202 to acquire the resource lock 204. At step 302 the total
number of lock acquisitions 218 in the contention efficient

US 9,342,377 B2

7

operating mode is incremented. At step 304, the method
determines if the present acquisition of the resource lock 204
is not contended by more than one resource requester 202. For
example, the present acquisition of the resource lock 204 is
not contended if it is a “fast” acquisition in a spinlock
approach to lock acquisition. If the present acquisition of the
resource lock 204 is contended by more than one resource
requester 202 (such as a “slow” acquisition) the method ter-
minates. I step 304 determines that the present acquisition is

not contended by more than one resource requester 202 (such 10

as a “fast” acquisition), the method proceeds to step 306
where the number of uncontended acquisitions 218 in the
contention efficient mode is incremented. Subsequently, at
step 308, the method calculates the contention rate 214 as the
total number of acquisitions 220 in the contention efficient
mode divided by the number of uncontended acquisitions 208
in the contention efficient mode. At step 310 the method
determines if the contention rate 214 meets the threshold rate
216, such as by exceeding the threshold rate 216. Only if the
contention rate 214 does meet the threshold rate 216 the lock
mode changer 210 changes the operating mode 206 of the
resource lock 204 to the non-contention efficient operating
mode. Alternatively, the deflation can occur once the lock is
exited; at that point a determination can be made as to whether
the lock can be deflated (if it is actually contended or there are
other resource requesters in a “wait” state). If the lock can be
deflated, it is.

The calculation of the contention rate 214 and comparison
of the contention rate 214 against the threshold contention
rate 216 is undertaken only when in the resource lock 204 is
in the contention efficient operating mode. It is not under-
taken in the non-contention efficient operating mode because
the resource overhead of undertaking these calculations and
comparisons in the non-contention efficient operating mode
are too great and constitute an unacceptable performance
burden.

In an alternative embodiment of the present invention, the
number of uncontended acquisitions 218 in the contention
efficient operating mode and the total number of acquisitions
220 in the contention efficient operating mode are stored to a
data store when the lock mode changer 210 changes the
operating mode 206 of the resource lock 204 from the con-
tention efficient operating mode to the non-contention effi-
cient operating mode. The data store can form part of the lock
itself, such as a ‘lockword’ constituting a lightweight lock. In
this way these values persist for the resource lock 204
between changes in the operating mode 206.

The invention claimed is:

1. A computer hardware device for controlling access to a
resource having a resource lock configured to control access
to the resource, the resource lock having a contention efficient
operating mode and a non-contention efficient operating
mode, comprising:

a processor, wherein the processor is configured to initiate

and/or perform:

receiving a request, from one of a plurality of resource
requestors, to acquire control of the resource lock
upon the resource lock being in the contention effi-
cient operating mode; and

responsive to the request and based upon a relative mea-
sure of uncontended acquisitions for the resource lock
in the contention efficient operating mode, causing
the resource lock to change to the non-contention
efficient operating mode.

2. The computer hardware device of claim 1, wherein

the non-contention efficient operating mode is a light-

weight operating mode, and

15

20

25

30

35

40

45

50

55

60

65

8

the contention efficient operating mode is a heavyweight

operation mode.

3. The computer hardware device of claim 1, wherein

the relative measure is a contention rate defined as a ratio of

anumber of uncontended acquisitions, in the contention
efficient mode, divided by a number of total acquisi-
tions, in the contention efficient mode.

4. The computer hardware device of claim 1, wherein the
processor is further configured to initiate and/or perform:

comparing the relative measure to a predefined threshold

contention rate.

5. The computer hardware device of claim 4, wherein

the comparison of the relative measure to the predefined

threshold contention rate occurs only during the conten-
tion efficient operating mode of the resource lock.

6. The computer hardware device of claim 1, wherein the
processor is further configured to initiate and/or perform:

in response the received request,

incrementing a count of a number of total acquisitions of
the resource lock in the contention efficient mode; and

in response to access to the resource not being con-
tended, incrementing a count of a number of uncon-
tended acquisitions of the resource lock in the conten-
tion efficient mode.

7. The computer hardware device of claim 6, wherein the
processor is further configured to initiate and/or perform:

upon the resource lock changing from the non-contention

efficient operating mode to the contention efficient oper-

ating mode, retrieving

a previously-stored count of a number of total acquisi-
tions of the resource lock in the contention efficient
mode, and

a previously-stored count of a number of uncontended
acquisitions of the resource lock in the contention
efficient mode.

8. The computer hardware device of claim 1, wherein

the resource not being contended upon the one resource

requestor obtaining a fast acquisition of the resource
lock.

9. A method for controlling access to a resource having a
resource lock configured to control access to the resource, the
resource lock having a contention efficient operating mode
and a non-contention efficient operating mode, comprising:

receiving a request, from one of a plurality of resource

requestors, to acquire control of the resource lock upon
the resource lock being in the contention efficient oper-
ating mode; and

responsive to the request and based upon a relative measure

of uncontended acquisitions for the resource lock in the
contention efficient operating mode, causing the
resource lock to change to the non-contention efficient
operating mode.

10. The method of claim 9, wherein

the non-contention efficient operating mode is a light-

weight operating mode, and

the contention efficient operating mode is a heavyweight

operation mode.

11. The method of claim 9, wherein

the relative measure is a contention rate defined as a ratio of

anumber of uncontended acquisitions, in the contention
efficient mode, divided by a number of total acquisi-
tions, in the contention efficient mode.

12. The method of claim 9, further comprising:

comparing the relative measure to a predefined threshold

contention rate, wherein

US 9,342,377 B2

9

the comparison of the relative measure to the predefined
threshold contention rate occurs only during the conten-
tion efficient operating mode of the resource lock.

13. The method of claim 9, further comprising:

in response the received request,

incrementing a count of a number of'total acquisitions of
the resource lock in the contention efficient mode; and

in response to access to the resource not being con-
tended, incrementing a count of a number of uncon-
tended acquisitions of the resource lock in the conten-
tion efficient mode.

14. The method of claim 13, further comprising:

upon the resource lock changing from the non-contention

efficient operating mode to the contention efficient oper-

ating mode, retrieving

a previously-stored count of a number of total acquisi-
tions of the resource lock in the contention efficient
mode, and

a previously-stored count of a number of uncontended
acquisitions of the resource lock in the contention
efficient mode.

15. A computer program product comprising a computer
usable storage medium having stored therein computer
usable program code for controlling access to a resource
having a resource lock configured to control access to the
resource, the resource lock having a contention efficient oper-
ating mode and a non-contention efficient operating mode,
the computer usable program code, which when executed by
a computer hardware system, causes the computer hardware
system to perform:

receiving a request, from one of a plurality of resource

requestors, to acquire control of the resource lock upon
the resource lock being in the contention efficient oper-
ating mode; and

responsive to the request and based upon a relative measure

of' uncontended acquisitions for the resource lock in the
contention efficient operating mode, causing the
resource lock to change to the non-contention efficient
operating mode.

20

25

30

35

10

16. The computer program product of claim 15, wherein

the non-contention efficient operating mode is a light-
weight operating mode, and

the contention efficient operating mode is a heavyweight
operation mode.

17. The computer program product of claim 15, wherein

the relative measure is a contention rate defined as a ratio of
anumber of uncontended acquisitions, in the contention
efficient mode, divided by a number of total acquisi-
tions, in the contention efficient mode.

18. The computer program product of claim 15, wherein

the computer usable program code further causes the com-
puter hardware system to perform:

comparing the relative measure to a predefined threshold
contention rate, wherein

the comparison of the relative measure to the predefined
threshold contention rate occurs only during the conten-
tion efficient operating mode of the resource lock.

19. The computer program product of claim 15, wherein

the computer usable program code further causes the com-
puter hardware system to perform:

in response the received request,
incrementing a count of a number of total acquisitions of
the resource lock in the contention efficient mode; and
in response to access to the resource not being con-
tended, incrementing a count of a number of uncon-
tended acquisitions of the resource lock in the conten-
tion efficient mode.
20. The computer program product of claim 19, wherein

the computer usable program code further causes the com-
puter hardware system to perform:

upon the resource lock changing from the non-contention

efficient operating mode to the contention efficient oper-

ating mode, retrieving

a previously-stored count of a number of total acquisi-
tions of the resource lock in the contention efficient
mode, and

a previously-stored count of a number of uncontended
acquisitions of the resource lock in the contention
efficient mode.

#* #* #* #* #*

